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Abstract
In this letter we demonstrate, in an elementary manner, that given a partition
of the single particle Hilbert space into orthogonal subspaces, a Fermi sea
may be factored into pairs of entangled modes, similar to a BCS state. We
derive expressions for the entropy and for the particle number fluctuations of
a subspace of a Fermi sea, at zero and finite temperatures, and relate these by
a lower bound on the entropy. As an application we investigate analytically
and numerically these quantities for electrons in the lowest Landau level of a
quantum Hall sample.

PACS numbers: 03.67.Mn, 05.70.−a, 05.30.Fk

The study of quantum many particle states, when measurements are only applied to a given
subsystem, are at the heart of many questions in physics. Examples where the entropy of such
subsystems is interesting range from the quantum mechanical origins of black hole entropy,
where the existence of an event horizon thermalizes the field density matrix inside the black
hole [1, 2] to entanglement structure of spin systems [3]. In this work we address the relation
of entanglement entropy of fermions with the fluctuations in the number of fermions.

A general treatment of a BCS-like factorization of a Gaussian state on a bi-partite system
was carried out in [4]. Here we concentrate on a particular case and show in an elementary
way how a given subspace of the single particle Hilbert space, a Fermi sea, may be factorized
into pairs of entangled modes in and out of the subspace, thereby writing the state as a BCS
state. We then use this construction to calculate various properties of the fermions in one of
the subsystems.

While upper bounds on entropy were the subject of numerous investigations, especially
since Bekenstein’s bound [5], lower bounds on entropy are less known.

We show that given a ‘Fermi sea’, the entropy of the ground state, restricted to a particular
subspace A of the single particle space, relates to the particle number fluctuations in the
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subspace via the inequality:

SA � (4 log 2)�N2
A � −(8 log 2)

〈〈
N4

A

〉〉
, (1)

where SA is the entropy associated with the subspace A, �N2
A are the fluctuations in the

particle number in A and
〈〈
N4

A

〉〉
is the fourth cummulant of particle number1. The importance

of this result lies in the fact that particle fluctuations are, in principle, measurable, and
are fundamentally related to the quantum noise in various systems. On the technical side,
note that the right-hand side has the advantage of being easy to calculate analytically in a
wider class of problems.

We start by examining the ground state of non-interacting fermions, in arbitrary external
potential, when measurements are applied to a given part of the space. The basic example
is a Fermi sea or a Dirac sea where we are interested in the relative entropy of a given
region of space, and in fluctuations in the number of particles there, but one may also consider
entanglement in Fermion traps (Fermi degeneracy of potassium atoms (40K) has been observed
by DeMarco and Jin [6]).

The discussion is also relevant for systems which behave like a non-interacting Fermi
gas, as in problems of transport at the zero temperature limit2, in ideal metals, where transport
may be approximated well within a non-interacting theory, due to good screening. In an ideal
single channel conductor the analogy is done by mapping excitations that travel at the Fermi
velocity to a time–energy coordinate representation in discussion of quantum pumps [7–9].
The analogy is especially manifest in the problem of switching noise [10].

The ground state of a noninteracting Fermi gas, containing N particles, is obtained by
occupying the allowed states φi ∈ H (H is the single particle Hilbert space) up to energy Ef , i.e.

|gs〉 =
∏

E(φi)<Ef

ψ †(φi)|0〉, (2)

where ψ † are creation operators which satisfy the usual canonical anti-commutation relations
(CAR):

[ψ(φi), ψ
†(φj )]+ = 〈φi, φj 〉 [ψ(φi), ψ(φj )]+ = [ψ(φi)

†, ψ †(φj )]+ = 0. (3)

The state |gs〉 or the ‘Fermi sea’ is a typical ground state for a large class of Hamiltonians
(sometimes it is necessary to carry a suitable Bogolubov transformation). It can also describe
spin chains via the Jordan–Wigner transformation.

Let A be a subspace of the single particle Hilbert space H, so that H = A ⊕ A⊥ and let
E = span{φi; 1 � i � N} be the subspace of occupied single particle states of H (the Fermi
sea).

Let PA be the orthogonal projection on A. Consider the matrix

M(A)ij = 〈PAφj , PAφi〉, (4)

with i, j = 1, . . . , N.3 Mij is a Hermitian matrix and is diagonalized by a unitary
U: M = U †diag(di)U .

The new orthonormal modes are defined by

Al =
∑

k U
†
lkPAφk√
dl

,

1 Note that a fourth cummulant may have either sign.
2 The zero temperature state is completely degenerate. Otherwise, we need the condition (for strong degeneracy)
T � EF .
3 We restrict ourself to states that obey ‖PAφj‖2 > 0, otherwise they are already of the required form.
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where the factor dl is the lth eigenvalue of M, and serves to normalize the Al with the

inner product on H. Similarly we take Bl =
∑

k U
†
lkP

⊥
A φk√

1−dl
, which are orthonormal since

M(A⊥) = I − M(A) is diagonalized by U as well. Obviously Ai ∈ A and Bi ∈ A⊥.
Since U is unitary we write E = span{U †φi}. Using U

†
ilφl = √

diAi +
√

1 − diBi , the
ground state may be written as (up to an overall phase)

|gs〉 =
N∏

i=1

�†(U †
ij φj

)|0〉 =
N∏

i=1

(√
di�

†(Ai) +
√

1 − di�
†(Bi)

)|0〉. (5)

Note that the 0 � di � 1 due to the structure of M. We also note that it is not assumed that the
dimension of the subspace A is larger than the number of fermions N. In this case dim A < N ,
the matrix M will have some of its eigenvalues vanishing, signaling that some modes of B are
occupied with probability one. In general we always have that #{di 	= 0} � min(dim A,N).
In the simplest case where A is only a one-dimensional subspace, the matrix M will have at
most one eigenvalue which differs from zero, which is the probability amplitude of this single
mode to be occupied.

In the particular case that [PE, PA] = 0 the exercise becomes trivial, as PE and PA can
be diagonalized simultaneously. In addition, whenever there is a symmetry operator that
commutes with PA and PE , then the resultant eigenmodes are invariant under the symmetry.

Note, incidentally, that the ground state may be written also as a BCS state in the following
way. Consider the vector |A〉 = ∏

ψ †(Ai)|0〉, defined by ‘filling’ the modes in A, and redefine
ψ(Ai) = ψ

†
h(Ai), then

|gs〉 =
∏

i

(√
di −

√
1 − diψ

†(Bi)ψ
†
h(Ai)

)|A〉. (6)

Similar to a BCS state, where the entanglement structure of the modes pairs Ai, Bi is clearly
seen.

If we factor the single particle Hilbert space H into

H =
N⊕

i=1

span{Ai, Bi}
⊕

(Complement), (7)

the fermion Fock space factors into an appropriate tensor product. When working in terms
of occupation number representation, the Fock space is spanned by states of the form∣∣σA1σB1σA2σB2 · · · 〉 where σAi

, σBi
= 0 or 1 is the occupation of state Ai or Bi respectively. In

this basis we can write naturally the density matrix as

ρ = |gs〉〈gs| =
N⊗

i=1

|νi〉〈νi |, (8)

where νi = √
di

∣∣1Ai
0Bi

〉
+

√
1 − di

∣∣0Ai
1Bi

〉. After a partial trace over the B ′s, the reduced
density matrix is given by

ρA =
N⊗

i=1

(
1 − di 0

0 di

)
, (9)

where di is the probability of having a particle in mode Ai .
From the density matrix ρA we have

〈N〉A = Tr(M), �N2
A = 〈N2 − 〈N〉2〉A = Tr M(1 − M). (10)
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Figure 1. The functions −x log x − (1 − x) log(1 − x) � 4 log 2x(1 − x) � −8 log 2x(x − 1)

(1 − 6x + 6x2) are related to the entropy, the 2nd and 4th cummulants.

To study further moments, denote P(k) the probability of having k fermions in A and consider
the generating function:

χ(λ) =
∑

P(k)eiλk = det(1 + M(eiλ − 1)). (11)

The cummulants of the number of fermions in A may be extracted from the generating function
by differentiating log χ and setting λ = 0. For example, the fourth cummulant is given by

〈〈N4〉〉 = ∂4
iλ log χ |λ=0 = Tr(M(1 − M)(1 − 6M + 6M2)). (12)

The reduced entropy is obtained from ρA:

SA = −Tr(M log M + (1 − M) log(1 − M)). (13)

This entropy is equivalent to the usual entropy of a Fermi gas with the occupation number
operator M.

Comparing the expressions (10), (12) and (13), and using the fact that 0 � M � 1, we
get the inequalities (1) as promised (figure 1).

The difference between the cummulants and the entropy comes from eigenstates with
probability away from 1/2 but not exactly 0 or 1. The fourth cummulant may be used to
estimate the contribution to the second moments of eigenvalues of nA away from 1/2, as the
function −2x(x −1)(1−6x + 6x2) is negative outside the interval (1/2−√

3/4, 1/2 +
√

3/4).
The inequalities are valid for finite temperatures too. To see this, consider a general

density matrix of the form ρ = Z−1e−Kij a
†
i aj . By tracing out the A⊥ degrees of freedom, the

reduced density matrix acquires the form

ρA = det(1 − nA)exp

(
log

(
nA

1 − nA

)
ij

a
†
i aj

)
, (14)

where nA = PA
1

1+eK PA is as an operator on A. The construction of this distribution from

the covariance matrix
〈
aia

†
j

〉
was discussed in several papers, mainly in the context of density

matrix renormalization group [14, 15], where a similar expression was obtained.
The resulting density matrix on A may be considered as thermal by appropriately choosing

the ‘energies’ εi = log 1−di

di
. The density matrix may then be written as a ‘thermal’ state

ρ = Z−1
A exp

(−∑
εiψ

†(Ai)ψ(Ai)
)
. Note that while the new eigenstates may have large

values for the energy with respect to K, the operator nA is well defined, and bounded by 1.
The entropy is

S = −Tr(nA log nA + (1 − nA) log(1 − nA)).

The generating function χ(λ) becomes

χ(λ) = det(1 + nA(eiλ − 1)), (15)

and the expressions for the moments are the same with the identification: M → nA.
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One may attempt to find a similar inequality for Bosons. For a closed system in thermal
equilibrium

S = Tr((1 + nBE) log(1 + nBE) − nBE log nBE) (16)

(where nBE is a Bose–Einstein occupation operator) and

(�N)2 = Tr nBE(1 + nBE). (17)

In most cases particle fluctuations will dominate the entropy, however one can check that
whenever nBE < 1 (a dilute boson gas) then

SBosons � (log 2)(�N)2
Bosons. (18)

For systems in which the single particle energies have a gap � above the zero energy, as the
temperature goes to zero we have ni → 0, making the inequality above valid.

The expressions above may be extended to systems with infinitely many particles. At
zero temperature the Fermi sea defines a projection PE , such as projection on momentum
states below kF , or the lowest Landau level in the example below. One may then replace M
by the operator PEPAPE in all expressions such as (10), (12) and (13). Note that whenever
the average number of particles in the box A is finite, the operator PEPAPE has a finite trace,
i.e. it is a compact operator and as such may be regarded as a limit of finite matrices.

While the cases of spin chains and free fields were studied in numerous works, other
important examples wait addressing. Here we consider the problem of 2D electrons in a
quantum Hall sample.

The filled lowest Landau level is spanned by the states |k〉 = 1√
πk!

zk e−|z|2/2.4

In [11], the entanglement entropy of a Chern–Simons theory describing a quantum hall
defined on a disc was shown to scale like the radius. Let us now calculate the particle
fluctuations. We choose A to be a disc of radius R. Due to the radial symmetry of the system
and of A, the factorization (5) is possible mode by mode, and the lowest Landau level may be
written as

|LLL〉 =
∏
k

(√
dkψ

†(|k〉A) +
√

1 − dkψ(|k〉A⊥)
)|0〉, (19)

where dk = 1 − (1+k,R2)

k! are given in terms of the incomplete gamma function, |k〉A =
1√
dk

χ(|z| < R)|k〉, and |k〉A⊥ is defined similarly5. We will see that in this case both entropy
and particle fluctuations are asymptotically linear in R, thereby proportional to the boundary
area.

Particle fluctuations in this model are given by = 〈
�N2

A

〉 = ∑
l Mll(1 − Mll). This sum

may be approximated analytically as follows: write

∑
l

M2
kk =

∑
k,l

δk,lMk,l = 2

π

∫ 2π

0
dθ

∫ R

0

∫ R

0
dx dy ex2 e−iθ +y2 eiθ

xy e−x2−y2
. (20)

This sum can be written, after the x, y integrations, as the contour integral

∑
l

M2
kk = − 1

2π i

∮
|z|=1

dz

(
1 − e−R2(1−z)

)(
1 − e−R2(1−1/z)

)
(1 − z)2

.

4 In the symmetric gauge for the vector potential Ai = − B
2 εij x

j . The length unit is
√

2l where l =
√

h̄c
eB

is the
magnetic length.
5 Note that the average number of particles contained in A is

∑
dk ∼ R2.
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Figure 2. S(R)/�N(R)2 for a disc in the lowest landau level.
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Figure 3. The modes k = 6n, n = 0, . . . , 7 for R = 6 are concentrated closer to the boundary
with increasing k.

Since the integrand is analytic outside z = 0 we break it up and do part of the integration on a
contour with |z| → ∞:

(�N(R))2 = R2 − 1

2π i

∮
|z|→∞

dz
e−R2(

eR2z − eR21/z
)

(1 − z)2
− 1

2π i

∮
|z|=1

dz
1 − e−R2(2−z−1/z)

(1 − z)2
.

The first integral can be evaluated in the limit R → ∞, by the residue theorem, and simply
cancels the R2 term. The contribution to the remaining integral comes from around the point
θ = 0, we linearize near this point and get, as R → ∞:

(�N(R))2 ∼ 1

2π

∫ ∞

−∞
dθ

1 − e−R2θ2

θ2
= 1√

π
R. (21)

We see that in this model, the fluctuations are proportional to the boundary. A numerical check
shows that the entropy and

〈
�N2

A

〉
have the same scaling (figure 2).

In this example it is manifest that for a fixed R, as k grows larger (especially6 for
k > R2), the modes |k〉A are localized stronger at the boundary, showing that the information is
concentrated near the boundary (figure 3). Note that in this case we consider from the outset an
infinite number of fermion modes, in contrast with the spin-chain case, where a finite segment
yields a finite-dimensional fermionic Fock space after the Jordan–Wigner transformation.

We remark that since quasi-free fermionic states are related to determinantal processes
[12], equivalent inequalities may be obtained for the connection of the entropy and the
fluctuations in such systems. In particular, if one is interested in particle fluctuations, then

6 In this problem there is a crossover near k = R2, where dk ∼ 1/2. To see this use the property
(n,n)
(n)

< 1/2 <
(n,n−1)

(n)
, from which dR2 (R2) < 1/2 < dR2 (R2 − 1) (valid for R2 integer).
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the theorem of Lebowitz and Costin [13] ensures a Gaussian behaviour for the scaled particle
number fluctuations as the volume grows larger for a large class of determinantal processes.

In the case of a 1D Fermi gas, both entropy and particle fluctuations in a box of size
L scale as log kF L7 particle number fluctuations in 1D conductors may be observed using
ultra-fast transistors; however it will not be possible to ignore the Coulomb interaction. We
note that for a 1D conductor, there is a pre-factor due to the cross section, which means that
the fluctuations may be quite large. For the more general case of d dimensions, we remark
that the connection between fluctuations and entropy reported here was recently used in [16]
to show that the entanglement entropy of free fermions scales faster than area law, i.e., as
Ld−1 log L for a hypercube with side L.

To summarize, in this letter we have shown how the ground state of fermions can be
factored into sets of pairs of modes—inside and outside a given subsystem. We have outlined
the connection between the entanglement entropy and the fluctuations in the particle number
in two ways: first, the inequality (1) supplies a lower bound on the available entanglement
entropy, and second, noting that in some cases (namely the 1D Fermi sea and the lowest
Landau level) both quantities scale in a similar way.
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